NiO-TiO2 p-n Heterojunction for Solar Hydrogen Generation

2021 
Photocatalytic water splitting for hydrogen production has been widely recognized as a promising strategy for relieving the pressure from energy crisis and environmental pollution. However, current efficiency for photocatalytic hydrogen generation has been limited due to a low separation of photogenerated electrons and holes. p-n heterojunction with a built-in electric field emerges as an efficient strategy for photocatalyst design to boost hydrogen evolution activities due to a spontaneous charge separation. In this work, we investigated the effect of different preparation methods on photocatalytic hydrogen production over NiO-TiO2 composites. The results demonstrated that a uniform distribution of NiO on a surface of TiO2 with an intimate interfacial interaction was formed by a sol-gel method, while direct calcination tended to form aggregation of NiO, thus leading to an uneven p-n heterojunction structure within a photocatalyst. NiO-TiO2 composites fabricated by different methods showed enhanced hydrogen production (23.5 ± 1.2, 20.4 ± 1.0 and 8.8 ± 0.7 mmolh−1g−1 for S1-20%, S2-20% and S3-10%, respectively) as compared with pristine TiO2 (6.6 ± 0.7 mmolh−1g−1) and NiO (2.1 ± 0.2 mmolh−1g−1). The current work demonstrates a good example to improve photocatalytic hydrogen production by finely designing p-n heterojunction photocatalysts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []