High-order overset grid method for detecting particle impaction on a cylinder in a cross flow

2019 
An overset grid method was developed to investigate the interaction between a particle-laden flow and a circular cylinder. The method is implemented in the Pencil Code, a high-order finite-difference code for compressible flow simulation. High-order summation-by-parts operators were used at the cylinder boundary, and both bi-linear Lagrangian and bi-quadratic spline interpolation were used to communicate between the Cartesian background grid and the body-conformal cylindrical grid. The performance of the overset grid method was assessed to benchmark cases of steady and unsteady flows past a cylinder. Results show high-order accuracy and good agreement to the literature. Particle-laden flow simulations were performed, with inertial point particles impacting on a cylinder. The simulations reproduced results from the literature at a significantly reduced cost. Further, an investigation into blockage effects on particle impaction revealing that the previously published DNS data is less accurate than assumed f...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    8
    Citations
    NaN
    KQI
    []