Native-like intermediate on the folding pathway of Escherichia coli succinyl-CoA synthetase.

1988 
Abstract The transition between the native and denatured states of the tetrameric succinyl-CoA synthetase from Escherichia coli has been investigated by circular dichroism, fluorescence spectroscopy, cross-linking by glutaraldehyde and activity measurements. At pH 7.4 and 25 degrees C, both denaturation of succinyl-CoA synthetase by guanidine hydrochloride and refolding of the denatured enzyme have been characterized as reversible reactions. In the presence of its substrate ATP, the denatured enzyme could be successfully reconstituted into the active enzyme with a yield of 71-100%. Kinetically, reacquisition of secondary structure by the denatured enzyme was rapid and occurred within 1 min after refolding was initiated. On the other hand, its reactivation was a slow process which continued up to 25 min before 90% of the native activity could be restored. Both secondary and quaternary structures of the enzyme, reconstituted in the absence of ATP, were indistinguishable from those of the native enzyme but the renatured protein was catalytically inactive. This observation indicates the presence of catalytically inactive tetramer as an intermediate in the reconstitution process. The reconstituted protein could be reactivated by ATP even 10 min after the reacquisition of the native secondary structure by the refolding protein. However, reactivation of the protein by ATP 60 min after the regain of secondary structure was significantly less, suggesting that rapid refolding and reassociation of the monomers into a native-like tetramer and reactivation of the tetramer are sequential events; the latter involving slow and small conformational rearrangements in the refolded enzyme that are likely to be associated with phosphorylation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    6
    Citations
    NaN
    KQI
    []