Quasioptics for corneal sensing at 220 - 330 GHz: design, evaluation, and ex-vivo cornea parameter extraction

2020 
The design, simulation, and characterization of a quasioptical system for submillimeter-wave quantification of corneal thickness and water content are presented. The optics operate in the 220–330 GHz band and are comprised of two, custom aspheric, biconvex lenses in a Gaussian beam telescope configuration. The design produces broadband wavefront curvature matching to 7.5 mm radius of curvature target surfaces thus emulating a plane-wave-on-planar-media condition and enabling application of stratified medium theory to data analysis. Aspheric lens coefficients were optimized with geometric ray tracing subject to optical path length penalties and physical-optics simulations showed aspheric designs achieved wavefront coupling to spherical surfaces, superior to equivalent, canonical hyperbolic lenses. The fabricated lens system was characterized in a planar near-field scanner system and demonstrated good agreement to physical-optics simulations. An average central corneal thickness of 652 μ m and free water content volume of 47% were extracted from ex vivo sheep corneas via complex s -parameters and agree with literature values. Extracted contact lens thickness and water content agreed with independently validated values. Moreover, the quasioptical system enabled observation of dynamic changes in artificial tear-film, thickness, and water content. This work elucidates two major findings related to submillimeter-wave wavefront matching on spherical surfaces, with wavelength order radii of curvature: 1) An asphere whose sag coefficients are optimized via field phase variation on a spherical surface produces coupling superior to a plano-hyperbolic lens. 2) For most feasible apertures, the Gaussian beam waist is located in the aperture near field, suggesting consideration for operating in the beam near field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    3
    Citations
    NaN
    KQI
    []