Assessing the Cytoskeletal System and its Elements in C6 Glioma Cells and Astrocytes by Atomic Force Microscopy

2008 
Object To investigate how the characteristic structure of the cytoskeleton in glioma cells is associated with invasiveness. Methods The whole cytoskeletal system was characterized by atomic force microscopy (AFM), while single cytoskeletal elements were exhibited by AFM and using cytoskeletal protein inhibitors to inhibit microfilaments or/and microtubules and displayed by immunofluorescence microscopy. The fluorescence intensity of F-actin was measured by flow cytometry and the structural difference between C6 glioma cells and astrocytes was studied. Results Cytoskeletons in both cells presented network structures, however, the C6 glioma cells showed an irregular edge root and their microfilaments were creber and dense. Intermediate filaments were extensive network structure with non-polarized multipoint connections. The microtubules were relatively big and long and formed tight bundles with close connections between bundles. Astrocytes had a regular and smooth edge, with sparse microfilaments, while the intermediate filaments were dense and interwoven and the microtubules were dense bundled, but only loosely connected each other. Besides, the fluorescence intensity of F-actin was significantly higher in C6 glioma cells (202.54 ± 11.06) than in the astrocytes (62.64 ± 10.23), P < 0.01. Conclusion Whole cytoskeleton and its elements of C6 cells were disclosed of characteristic structures associated with invasiveness. Meanwhile, the content of F-actin could be used as a parameter for measuring cell invasiveness.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    18
    Citations
    NaN
    KQI
    []