The role of low soil temperature in the inhibition of growth and PSII function during dark chilling in soybean genotypes of contrasting tolerance

2007 
Dark chilling affects growth and yield of warm-climate crops such as soybean [Glycine max (L.) Merr.]. Several studies have investigated chilling-stress effects on photosynthesis and other aspects of metabolism, but none have compared effects of whole-plant chilling (WPC; shoots and roots) with that of aboveground chilling in legumes. This is important because low root temperatures might induce additional constraints, such as inhibition of N2 fixation, thereby aggravating chilling-stress symptoms. Effects of dark chilling on PSII, shoot growth, leaf ureide content and photosynthetic capacity were studied in two soybean genotypes, Highveld Top (chilling tolerant) and PAN809 (chilling sensitive), in experiments comparing effects of WPC with that of shoot chilling (SC). Both treatments inhibited shoot growth in PAN809 but not Highveld Top. Also, WPC in PAN809 caused a decrease in leaf ureide content followed by severe chlorosis and alterations in O-J-I-P fluorescence-rise kinetics, distinct from SC. A noteworthy difference was the appearance of a AK peak in the O-J-I-P fluorescence rise in response to WPC. These genotypic and treatment differences also reflected in the degree of inhibition of CO2 assimilation rates. The appearance of a AK peak, coupled with growth inhibition, reduced ureide content, chlorosis and lower CO2 assimilation rates, provides mechanistic information about how WPC might have aggravated chilling-stress symptoms in PAN809. We introduce a model explaining how chilling soil temperatures might trigger N-I imitation in sensitive genotypes and how characteristic changes in O-J-I-P fluorescence-rise kinetics are linked to changes in carbon and nitrogen metabolism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    57
    Citations
    NaN
    KQI
    []