Formation, release and assembly of a non-evaporative photocurable liquid through micromolding and inkjet printing

2013 
This paper presents a hybrid method combining micromolding and inkjet printing for the formation of microparts at milli- to micrometer scales. Two-dimensional footprints of versatile shapes such as rotors and characters are first realized by micromolding. Then microdroplets are inkjet-printed into the micro-cavities of the micromolds, yielding three-dimensional formations of liquid with remarkable heights. Printed liquid of NOA 89 is photocurable for ultraviolet (UV) light, featuring 100% solids without the evaporation involved in solidification. After UV curing the liquid formations created solid and coherent textures with voids found through experiments. The shapes and morphologies of the formed parts are found to be uniform and smooth while using hydrophobic PDMS (polydimethysiloxane) as the material of the micromolds. Moreover, release of microparts from those molds is achievable by simple bending due to the elastomer property of PDMS. The molds and parts remain intact after separation. The assembly of the released parts of the rotors into the micro-channels of a PDMS fluidic chip is also demonstrated. Hence, the current method provides access to a cost-efficient manufacturing process of microparts with little waste as the micromolds can be reused via inkjet printing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    1
    Citations
    NaN
    KQI
    []