Lubrication State Recognition Based on Energy Characteristics of Friction Vibration with EEMD and SVM

2021 
In order to identify different lubrication states, lubrication experiments were carried out on a Bruker UMT-3 tester. The experimental results show that the frequency band energy characteristics of friction vibration signals are different under different lubrication states. Based on this, a lubrication state recognition method with ensemble empirical mode decomposition (EEMD) and support vector machine (SVM) was proposed. The vibration signals were decomposed into a finite number of stationary intrinsic mode functions (IMFs) with the EEMD method. The first six IMF components containing the main friction information were retained to calculate the energy ratio and construct the feature vector. The experimental results show that the mixed lubrication state can be identified by hundred percent, and there is a slight confusion between boundary lubrication and dry friction. The results show that frequency band energy of friction vibration signals is an effective feature to identify different lubrication states, and the proposed method can be used to identify different lubrication states.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []