Risk factors and prediction nomogram model for psychosocial and behavioural problems among children and adolescents during the COVID-19 pandemic: A national multicentre study: Risk Factors of Childhood Psychosocial Problems.
2021
Abstract Background We aimed to explore the risk profiles attributable to psychosocial and behavioural problems during the coronavirus disease 2019 pandemic. To this end, we created a risk-prediction nomogram model. Methods A national multicentre study was conducted through an online questionnaire involving 12,186 children (6-11 years old) and adolescents (12-16 years old). Respondents’ psychosocial and behavioural functioning were assessed using the Achenbach Child Behaviour Checklist (CBCL). Data were analysed using STATA software and R-language. Results The positive detection rate of psychological problems within Wuhan was greater than that outside Wuhan for schizoid (P = 0.005), and depression (P = 0.030) in children, and for somatic complaints (P = 0.048), immaturity (P = 0.023), and delinquent behaviour (P = 0.046) in adolescents. After graded multivariable adjustment, seven factors associated with psychological problems in children and adolescents outside Wuhan were parent-child conflict (odds ratio (OR): 4.94, 95% confidence interval (95% CI): 4.27-5.72), sleep problems (OR: 4.05, 95% CI: 3.77-4.36), online study time (OR: 0.41, 95% CI: 0.37-0.47), physical activity time (OR: 0.510, 95% CI: 0.44-0.59), number of close friends (OR: 0.51, 95% CI: 0.44-0.6), time spent playing videogames (OR: 2.26, 95% CI: 1.90-2.69) and eating disorders (OR: 2.71, 95% CI: 2.35-3.11) (all P Limitation A cross-sectional study and self-reported measures. Conclusions Besides the four significant risk factors within and outside Wuhan, the three additional factors outside Wuhan deserve special attention. The prediction nomogram models constructed in this study have important clinical and public health implications for psychosocial and behavioural assessment.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
30
References
1
Citations
NaN
KQI