Energy funnelling within multichromophore architectures monitored with subnanometre resolution.

2021 
The funnelling of energy within multichromophoric assemblies is at the heart of the efficient conversion of solar energy by plants. The detailed mechanisms of this process are still actively debated as they rely on complex interactions between a large number of chromophores and their environment. Here we used luminescence induced by scanning tunnelling microscopy to probe model multichromophoric structures assembled on a surface. Mimicking strategies developed by photosynthetic systems, individual molecules were used as ancillary, passive or blocking elements to promote and direct resonant energy transfer between distant donor and acceptor units. As it relies on organic chromophores as the elementary components, this approach constitutes a powerful model to address fundamental physical processes at play in natural light-harvesting complexes. Energy funnelling within multichromophoric assemblies is key to the conversion of solar energy by plants. Now, energy transport between phthalocyanine-based chromophores has been monitored at the submolecular level using scanning tunnelling microscopy, focusing on the role of ancillary, passive and blocking chromophores in promoting and directing energy transfer between distant donor and acceptor units.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    3
    Citations
    NaN
    KQI
    []