SCExAO, a testbed for developing high-contrast imaging technologies for ELTs

2021 
To directly detect exoplanets and protoplanetary disks, the development of high accuracy wavefront sensing and control (WFS&C) technologies is essential, especially for ground-based Extremely Large Telescopes (ELTs). The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a high-contrast imaging platform to discover and characterize exoplanets and protoplanetary disks. It also serves as a testbed to validate and deploy new concepts or algorithms for high-contrast imaging approaches for ELTs, using the latest hardware and software technologies on an 8-meter class telescope. SCExAO is a multi-band instrument, using light from 600 to 2500 nm, and delivering a high Strehl ratio (>80% in median seeing in H-band) downstream of a low-order correction provided by the facility AO188. Science observations are performed with coronagraphs, an integral field spectrograph, or single aperture interferometers. The SCExAO project continuously reaches out to the community for development and upgrades. Existing operating testbeds such as the SCExAO are also unique opportunities to test and deploy the new technologies for future ELTs. We present and show a live demonstration of the SCExAO capabilities (Real-time predictive AO control, Focal plane WFS&C, etc) as a host testbed for the remote collaborators to test and deploy the new WFS&C concepts or algorithms. We also present several high-contrast imaging technologies that are under development or that have already been demonstrated on-sky.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []