Interaction of Particles in the Near Field and Opposition Effects in Regolith-Like Surfaces

2009 
The explanation of the opposition effects observed in brightness and polarization in different celestial bodies and laboratory samples is still far from being complete. The shadow hiding and coherent backscattering mechanisms are mentioned most frequently in this connection. In the present work, we consider one more scattering mechanism—the interaction of particles in the near field—and its influence on the brightness and polarization of light scattered by ensembles of particles at small phase angles. First, we analyze two manifestations of this mechanism: the field inhomogeneity in the vicinity of the scatterers and the shielding of particles by each other at distances compared with their sizes. Then, we use the model regolith described as an ensemble of clusters as constituents and compare the contributions of the coherent backscattering and the near-field effect to the intensity and polarization of light when the porosity of the ensemble is varied. The modeling confirms that the phase dependences of the intensity and polarization of light scattered by complex structures in the backscattering domain is mainly caused by these two mechanisms. The coherent backscattering works more effectively in sparse media, while the near-field effect manifests itself in more compact ensembles of wavelength-sized particles. However, it is difficult to distinguish quantitatively their contributions, even in models of simple structures. A number of observations, especially of moderate- and low-albedo objects, can be explained only by invoking the near-field effect.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    8
    Citations
    NaN
    KQI
    []