On the possible origin of troilite‐metal nodules in the Katol chondrite (L6‐7)

2017 
Microtextural study of a single troilite-metal nodule (TMN) from the Katol L6-7 chondrite, a recent fall (May, 2012) in India suggests that the TMN is primarily an aggregate of submicron-scale intergrowth of troilite and kamacite (mean Ni: 6.18 wt%) juxtaposed with intensely fractured silicates, mainly olivine (Fa: 25 mole%), low-Ca pyroxene (Fs: 21.2 mole%), and a large volume of maskelynite. Evidence of shock textures in the TMN indicates a high degree of shock metamorphism that involves plagioclase-maskelynite and olivine-wadsleyite/ringwoodite transformations and formation of quenched metal-sulfide melt textures due to localized shear-induced frictional melting. It is inferred that the TMN formation is an independent, localized event by a high energy impact and its subsequent incorporation in the ejected chondritic fragment of the parent body. Katol chondrite has been calibrated with a peak shock pressure of S5 (~45 GPa) after Stoffler et al. (1991), whereas peak shock pressure within the TMN exceeds the shock facies S6 (>45 GPa) following Bennett and McSween (1996) and Stoffler et al. (1991). Overall, the shock-thermal history of the Katol TMN is dissimilar as compared to the host chondrite.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    7
    Citations
    NaN
    KQI
    []