Exponential stability in the Lagrange sense for Clifford-valued recurrent neural networks with time delays

2021 
This paper considers the Clifford-valued recurrent neural network (RNN) models, as an augmentation of real-valued, complex-valued, and quaternion-valued neural network models, and investigates their global exponential stability in the Lagrange sense. In order to address the issue of non-commutative multiplication with respect to Clifford numbers, we divide the original n-dimensional Clifford-valued RNN model into $2^{m}n$ real-valued models. On the basis of Lyapunov stability theory and some analytical techniques, several sufficient conditions are obtained for the considered Clifford-valued RNN models to achieve global exponential stability according to the Lagrange sense. Two examples are presented to illustrate the applicability of the main results, along with a discussion on the implications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    2
    Citations
    NaN
    KQI
    []