Increased localization precision by interference fringe analysis

2015 
We report a novel optical single-emitter-localization methodology that uses the phase induced by path length differences in a Mach–Zehnder interferometer to improve localization precision. Using information theory, we demonstrate that the localization capability of a modified Fourier domain signal generated by photon interference enables a more precise localization compared to a standard Gaussian intensity distribution of the corresponding point-spread function. The calculations were verified by numerical simulations and an exemplary experiment, where the centers of metal nanoparticles were localized to a precision of 3 nm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    7
    Citations
    NaN
    KQI
    []