LaAlO 3 基电解质与阳极材料的化学相容性及电化学性能

2012 
Powders of La0.90Sr0.10Al0.97Mg0.03O3-δ (LSAM) were synthesized by the glycine-nitrate process, and then sintered at 1500 °C for 5 h. Impedance spectroscopy at 900 °C in air revealed that the conductivity of LSAM was 1.11×10 S·cm-1. The chemical compatibility of LSAM with anode materials NiO-Ce0.9Gd0.1O1.95 (Ni-GDC), Sr0.88Y0.08TiO3 (SYT) and La0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) was characterized by X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy and AC impedance spectroscopy. The results indicated that SYT and LSCM had poor chemical compatibility with LSAM because Sr + , Ti + , Mn + , and Cr + diffused readily into the LSAM lattice. The interdiffusion of cations between LSAM and NiGDC at 1300 °C was limited, implying excellent chemical compatibility. The electrochemical performance of symmetrical cells of the anode materials was measured under hydrogen atmosphere. The area-specific polarization resistance of Ni-GDC was 5.12 Ω·cm2 at 800 °C. An open-circuit voltage of 0.925 V and a power density of 19.5 mW·cm-2 were obtained at 800 °C for a 550 μm thick LSAM electrolyte-supported single cell (Ni-GDC/GDC/LSAM/GDC/La0.75Sr0.25FeO3).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []