Significantly enhanced energy storage performance in Sm-doped 0.88NaNbO3-0.12Sr0·7Bi0·2TiO3 lead-free ceramics

2021 
Abstract Lead-free antiferroelectric (AFE) ceramic materials have attached increasing attention in application of high-power capacitors for the past few years, due to their high energy storage density and environmental protection. However, the related applications are seriously restricted because of the limited number of environment friendly AFE candidate materials, high cost and low energy storage efficiency. In this work, the A-site ion Sm3+ doped 0.88NaNbO3-0.12Sr0·7Bi0·2TiO3 lead-free AFE P phase ceramics (0.88Na1-3xSmxNbO3-0.12Sr0·7Bi0·2TiO3, abbreviated as NN-SBT-100xSm) were prepared and characterized. With the increase of Sm doping amount, a relaxor-like behavior was found in the dielectric-temperature curves of NN-SBT-100xSm, indicating the AFE orthorhombic P phase is gradually replaced by an AFE orthorhombic R phase. As a result, double-like and slim P-E curve with near-zero residual polarization and suppressed hysteresis loss was obtained at x > 0.01. More encouragingly, a good discharge energy storage density (Wrec = 3.58 J/cm3) and a high efficiency (η = 82%) at a low electric field (E = 200 kV/cm) has been recorded simultaneously for NN-SBT-2Sm relaxor AFE ceramic, which are better than the other lead-free energy storage ceramics under the same E. In addition, the energy storage properties of NN-SBT-2Sm ceramics exhibit outstanding temperature and frequency stability. These results indicate that NN-SBT-2Sm relaxor AFE ceramic has a great practical value in pulse power capacitors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    2
    Citations
    NaN
    KQI
    []