Cross-Linked Small-Molecule Capsules with Excitation Wavelength-Dependent Photoluminescence and High Loading Capacity: Design, Synthesis and Application in Imaging-Guided Drug Delivery

2020 
The cross-linked small-molecule micelles (cSMs) have found applications in many fields but their low loading capacity and non-fluorescence property hindered their further development. Herein, water-soluble organic nanoparticles were applied as templates to "stretch" the hydrophobic core of cSMs and photo-cross-linking was employed to supply photoluminescence. The resulting cross-linked small-molecule capsules (cSCs) not only reserve the superior properties of cSMs of accurate monomer, easy functionalization and robust stability, but also achieve high drug loading capacity and excitation wavelength-dependent fluorescence, where the drug loading contents (DLCs) for various hydrophobic drugs were more than 30-fold higher than that of cSMs, and the maximum quantum yield could be as high as 12.0%. Featuring these superiorities, the cSCs hold promising potential in many fields and an example of doxorubicin-loaded cSCs (DOX@cSCs) for multichannel imaging-guided drug delivery is shown in this work.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    2
    Citations
    NaN
    KQI
    []