Regulation of connexin 43 expression in human gingival fibroblasts

2018 
Abstract Aims Abundance of connexin 43 (Cx43), a transmembrane protein that forms hemichannels (HCs) and gap junctions (GJs), is dynamically regulated in human gingival fibroblasts (GFBLs) during wound healing. This may be important for fast and scarless gingival wound healing as Cx43 is involved in key cell functions important during this process. Our aim was to uncover the factors that regulate Cx43 expression and abundance in GFBLs. We hypothesized that cytokines and growth factors released during wound healing coordinately regulate Cx43 abundance in GFBLs. Results TGF-β1, -β2, -β3, PGE2 and IL-1β significantly upregulated, while TNF-α and IFN-γ downregulated Cx43 in cultured GFBLs. TGF-β1, -β2, -β3, IL-1β and IFN-γ modulated Cx43 abundance at both mRNA and protein levels, while TNF-α and PGE2 regulated only Cx43 protein abundance, suggesting involvement of distinct transcriptional/post-transcriptional and translational/post-translational mechanisms, respectively. TGF-β1-induced upregulation of Cx43 was mediated by TGFβRI (ALK5) and SMAD2/3 signaling, and this was potently suppressed by PGE2, IL-1β, TNF-α and IFN-γ that inhibited SMAD2/3 phosphorylation. Conclusion Regulation of Cx43 abundance in GFBLs involves transcriptional/post-transcriptional and translational/post-translational mechanisms that are distinctly modulated by an interplay between TGF-β isoforms and PGE2, IL-1β, TNF-α and IFN-γ.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    86
    References
    3
    Citations
    NaN
    KQI
    []