Improving Brain Tumor Segmentation in Multi-sequence MR Images Using Cross-Sequence MR Image Generation

2019 
Accurate brain tumor segmentation using multi-sequence magnetic resonance (MR) imaging plays a pivotal role in clinical practice and research settings. Despite their prevalence, deep learning-based segmentation methods, which usually use multiple MR sequences as input, still have limited performance, partly due to their insufficient ability to image representation. In this paper, we propose a brain tumor segmentation (BraTSeg) model, which uses cross-sequence MR image generation as a self-supervision tool to improve the segmentation accuracy. This model is an ensemble of three image segmentation and generation (ImgSG) models, which are designed for simultaneous segmentation of brain tumors and generation of T1, T2, and Flair sequences, respectively. We evaluated the proposed BraTSeg model on the BraTS 2019 dataset and achieved an average Dice similarity coefficient (DSC) of 81.93%, 87.80%, and 83.44% in the segmentation of enhancing tumor, whole tumor, and tumor score on the testing set, respectively. Our results suggest that using cross-sequence MR image generation is an effective self-supervision method that can improve the accuracy of brain tumor segmentation and the proposed BraTSeg model can produce satisfactory segmentation of brain tumors and intra-tumor structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    1
    Citations
    NaN
    KQI
    []