Interactions Between Obesity and One-Carbon Metabolism Genes in Predicting Prostate Cancer Outcomes Among White and Black Patients.

2021 
BACKGROUND One-carbon metabolism genes are linked to several cancers, but the association with prostate cancer (PCa) is less clear. Studies examining the relationship have not accounted for obesity, a risk factor for advanced PCa and altered methylation patterns. We hypothesized that obesity could moderate the association between one-carbon metabolism genes and PCa outcomes. METHODS We conducted secondary data analyses of the Study of Clinical Outcomes, Risk and Ethnicity. Obesity was included as a primary exposure and modifier (interacting with genetic polymorphisms) in the analytic models. We used logistic regression to determine associations of common one-carbon metabolism genotypes with odds of high stage (T3/T4) and high grade (Gleason score ≥ 7). We used Cox regression to examine associations of genotypes with biochemical recurrence. RESULTS There were 808 patients (632 White and 176 Black.) Among White men, we observed associations of TCN2_R259P with increased odds of high stage (OR = 0.64, 95% CI = 0.41-1.00), but no significant interactions with obesity. Among Black men, the SCL19A1_61bpdel and CBS_68bpINS variants were associated with high grade (OR = 2.61, 95% CI = 1.39-4.89 and OR = 0.29, 95% CI = 0.09-0.91, respectively.) Both the CBS_68bpINS and MTHFR_E429A variants interacted with obesity in Black men, where the highest risk for biochemical failure and odds of high grade, respectively, occurred among obese patients with variants. CONCLUSIONS We observed associations of one-carbon metabolism genes with different associations by race. We also observed interactions with obesity related to PCa outcomes in Black men only. Therefore, the involvement of one-carbon metabolism on PCa was dependent upon obesity status for Black men. These novel results could help identify patients that might benefit from effective weight management targeting one-carbon metabolism effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []