Ionic Liquid Aggregation Mechanism for Nanoparticle Synthesis.

2021 
Nanoparticle synthesis with silylamine reversible ionic liquids (RevILs) has been previously demonstrated to offer unique alternatives to traditional nanoparticle syntheses, allowing for size control and facile deposition onto support surfaces via the switchable nature of the IL. However, the mechanism of nanoparticle synthesis remains uncharacterized. The use of RevILs facilitates the synthesis of size-controlled nanoparticles without the use of additional stabilizing agents (i.e., surfactants, ligands, and polymers) that passivate the nanoparticle surface, which are traditionally required to control the nanoparticle size. Traditional techniques often require harsh activation steps that ultimately impact nanoparticle size and morphology. While RevIL syntheses offer an excellent alternative, as they do not require additional activation steps, the mechanism through which nanoparticles are synthesized in these systems has not been studied previously. Preceding work hypothesized nanoparticles prepared with RevILs are formed via a reverse micelle mechanism, in which nanoparticles are stabilized and templated within the aqueous core of the organized micelle structures. In this work, DOSY-NMR is used to demonstrate that nanoparticles synthesized with 3-aminopropyltriethylsilane RevIL are not formed through a reverse micelle mechanism but rather a switchable aggregation mechanism that affords control over the nanoparticle size via manipulation of the RevIL structure and concentration. Furthermore, it is shown that the addition of water to RevIL systems has detrimental effects on the aggregation behavior of the ionic liquid molecules in solution, causing disassembly of the ion pairs. However, because nanoparticle reduction likely occurs faster than the disassembly of the ion pairs, nanoparticle size is unaffected by the addition of water during nanoparticle reduction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    2
    Citations
    NaN
    KQI
    []