Electrochemical quartz crystal microbalance study on Au-supported Pt adlayers for electrocatalytic oxidation of methanol in alkaline solution
2010
Underpotential deposition (UPD) of Cu on an Au electrode followed by redox replacement reaction (RRR) of CuUPD with a Pt source (H2PtCl6 or K2PtCl4) yielded Au-supported Pt adlayers (for short, Pt(CuUPD-Pt4+)n/Au for H2PtCl6, or Pt(CuUPD-Pt2+)n/Au for K2PtCl4, where n denotes the number of UPD-redox replacement cycles). The electrochemical quartz crystal microbalance (EQCM) technique was used for the first time to quantitatively study the fabricated electrodes and estimate their mass-normalized specific electrocatalytic activity (SECA) for methanol oxidation in alkaline solution. In comparison with Pt(CuUPD-Pt2+)n/Au, Pt(CuUPD-Pt4+)n/Au exhibited a higher electrocatalytic activity, and the maximum SECA was obtained to be as high as 35.7 mA μg−1 at Pt(CuUPD-Pt4+)3/Au. The layer-by-layer architecture of Pt atoms on Au is briefly discussed based on the EQCM-revealed redox replacement efficiency, and the calculated distribution percentages of bare Au sites agree with the experimental results deduced from the charge under the AuO x -reduction peaks. The EQCM is highly recommended as an efficient technique to quantitatively examine various electrode-supported catalyst adlayers, and the highly efficient catalyst adlayers of noble metals are promising in electrocatalysis relevant to biological, energy and environmental sciences and technologies.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
35
References
2
Citations
NaN
KQI