Geometric nonlinear analysis of plates and cylindrical shells via a linearly conforming radial point interpolation method
2008
In this paper, the linearly conforming radial point interpolation method is extended for geometric nonlinear analysis of plates and cylindrical shells. The Sander’s nonlinear shell theory is utilized and the arc-length technique is implemented in conjunction with the modified Newton–Raphson method to solve the nonlinear equilibrium equations. The radial and polynomial basis functions are employed to construct the shape functions with Delta function property using a set of arbitrarily distributed nodes in local support domains. Besides the conventional nodal integration, a stabilized conforming nodal integration is applied to restore the conformability and to improve the accuracy of solutions. Small rotations and deformations, as well as finite strains, are assumed for the present formulation. Comparisons of present solutions are made with the results reported in the literature and good agreements are obtained. The numerical examples have demonstrated that the present approach, combined with arc-length method, is quite effective in tracing the load-deflection paths of snap-through and snap-back phenomena in shell problems.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
30
References
33
Citations
NaN
KQI