Early maturing spring wheat in Nordic wildtype NAM-B1 germplasm for short-duration alternative wheat-producing regions

2019 
In the USA, western Washington (WWA) and the Alaska (AK) Interior are two regions where maritime and continental climates, high latitude and cropping systems necessitate early maturing spring wheat (Triticum aestivum L.). Both regions aim to increase the production of hard spring bread wheat for human consumption to support regional agriculture and food systems. The Nordic region of Europe has a history of breeding for early maturing spring wheat and also experiences long daylengths with mixed maritime and continental climates. Nordic wheat also carries wildtype (wt) NAM-B1, an allele associated with accelerated senescence and increased grain protein and micronutrient content, at a higher frequency than global germplasm. Time to senescence, yield, protein and mineral content were evaluated on 42 accessions of Nordic hard red spring wheat containing wt NAM-B1 over 2 years on experimental stations in WWA and the AK Interior. Significant variation was found by location and accession for time to senescence, suggesting potential parental lines for breeding programmes targeting early maturity. Additionally, multiple regression analysis showed that decreased time to senescence correlated negatively with grain yield and positively with grain protein, iron and zinc content. Breeding for early maturity in these regions will need to account for this potential trade-off in yield. Nordic wt NAM-B1 accessions with early senescence yet with yields similar to regional checks are reported. Collaboration among alternative wheat regions can aid in germplasm exchange and varietal development as shown here for the early maturing trait.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    1
    Citations
    NaN
    KQI
    []