Sulfide Consumption in Sulfurimonas denitrificans and Heterologous Expression of Its Three Sulfide-Quinone Reductase Homologs

2016 
ABSTRACT Sulfurimonas denitrificans is a sulfur-oxidizing epsilonproteobacterium. It has been reported to grow with sulfide and to harbor genes that encode sulfide-quinone reductases (SQRs) (catalyze sulfide oxidation). However, the actual sulfide concentrations at which S. denitrificans grows and whether its SQRs are functional remain enigmatic. Here, we illustrate the sulfide concentrations at which S. denitrificans exhibits good growth, namely, 0.18 mM to roughly 1.7 mM. Around 2.23 mM, sulfide appears to inhibit growth. S. denitrificans harbors three SQR homolog genes on its genome (Suden_2082 for type II SQR, Suden_1879 for type III SQR, and Suden_619 for type IV SQR). They are all transcribed in S. denitrificans. According to our experiments, they appear to be loosely bound to the membrane. Each individual S. denitrificans SQR was heterologously expressed in the Rhodobacter capsulatus SB1003 sqr deletion mutant, and all exhibited SQR activities individually. This suggests that all of these three genes encode functional SQRs. This study also provides the first experimental evidence of a functional bacterial type III SQR. IMPORTANCE Although the epsilonproteobacterium Sulfurimonas denitrificans has been described as using many reduced sulfur compounds as electron donors, there is little knowledge about its growth with sulfide. In many bacteria, the sulfide-quinone reductase (SQR) is responsible for catalyzing sulfide oxidation. S. denitrificans has an array of different types of sqr genes on its genome and so do several other sulfur-oxidizing Epsilonproteobacteria. However, whether these SQRs are functional has remained unknown. Here, we shed light on sulfide metabolism in S. denitrificans. Our study provides the first experimental evidence of active epsilonproteobacterial SQRs and also gives the first report of a functional bacterial type III SQR.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    15
    Citations
    NaN
    KQI
    []