Effects of large herbivores on wood pasture dynamics in a European wetland system

2014 
Abstract Whether self-regulating large herbivores play a key role in the development of wood-pasture landscapes remains a crucial unanswered question for both ecological theory and nature conservation. We describe and analyse how a ‘partly self-regulating’ population of cattle, horses and red deer affected the development of the woody vegetation in the Oostvaardersplassen nature reserve (Netherlands). Using aerial photographs from 1980 to 2011, we analysed the development of shrubs and trees. Before the large herbivores were introduced in the Oostvaardersplassen in 1983, the woody vegetation increased and vegetation type significantly affected the number of establishments. Cover of woody species increased further from 1983 to 1996, not only by canopy expansion but also by new establishments. After 1996, cover of the woody vegetation decreased from 30% to Sambucus nigra and Salix spp. increased with increasing distance to grassland, which is the preferred foraging habitat of the herbivores. These results support the hypothesis of Associational Palatability. In addition, our results show that the relative decline in cover of S. nigra and Salix spp. over a certain period was negatively correlated with the cover of S. nigra in the beginning of this period, presenting some evidence for the Associational Resistance and Aggregational Resistance hypothesis. Our research shows aspects necessary for the woodland–grassland cycle, such as a strong decline of woody vegetation at high numbers of large herbivores and regeneration of shrubs and trees at low densities. Thorny shrubs, which are important for the cycle, have not yet established in the grasslands. It seems that a temporary decline in herbivore numbers is necessary to create a window of opportunity for the establishment of these woody species.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    17
    Citations
    NaN
    KQI
    []