The QuEChERS approach in a novel application for the identification of antifungal compounds produced by lactic acid bacteria cultures

2014 
Abstract Lactic Acid Bacteria (LAB) play an important role as natural food preservatives in many fermented food systems. To-date, characterisation of their diverse range of metabolites has been limited. Improved quantitation of low, medium and high concentration antifungal compounds is required, ensuring that both known and unknowns compounds are identified. This manuscript reports the first application of QuEChERS (quick, easy, cheap, effective, rugged and safe) for the extraction of natural antifungal metabolites in LAB cultures. The method provides improved individual recoveries (>78%) for 15 known antifungal compounds, an improvement of 26% compared to previously reported techniques (>52%). A protocol was developed that allowed LAB cultures to be easily assessed on a fully validated high performance liquid chromatography with ultra violet/diode array detection (HPLC-UV/DAD) method. Previously reported methods involving direct injection of filtered extracts and SPE clean-up, suffered from a rise in chromatographic baseline due to interfering matrix components, limiting accurate quantitation. This QuEChERS method removed these interfering matrix components to deliver clean chromatograms with greater recoveries (78.2–127.4%) and lower RSD values (2.5–10.8%) of all 15 antifungal compounds. The validated method was applied to LAB strains showing particularly strong antifungal activity and provided an increase in the number of compounds detected (both known and unknown) compared to previous techniques for the same strains, due to the improved recoveries now possible by this method. Confirmation of the compounds identified was performed by analysis on a liquid chromatography linear ion trap quadrupole Orbitrap hybrid Fourier transform mass spectrometer (LC-FTMS). This first application of QuEChERS to LAB cultures has significantly improved the analytical capabilities of antifungal compound profiling especially where the synergy of numerous compounds is suspected as producing the observed activity. LAB cultures can now be easily integrated into various food matrices, as natural food preservatives, now that a complete analyte profile is achievable.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    37
    Citations
    NaN
    KQI
    []