Assessment of Molecular Additives on the Lifetime of Carbon-Based Mesoporous Perovskite Solar Cells

2021 
Perovskite solar cells have progressed very steadily, reaching power conversion efficiencies (PCE) beyond 20% while also improving their lifetimes up to 10,000 h. A large number of cell architecture and materials for active, transporting and electrode layers have been used, either in blends or in nanostructured layers. In this article, a set of perovskite solar cells have been designed, fabricated and characterized with special focus on their lifetime extension. The inclusion of 5-amino-valeric acid iodide (5–AVAI) as interlayer in a methyl-amino lead-iodide (MAPI) perovskite solar cell has provided additional stability in cells with PCE > 10% and T80 = 550 h. Experiments for up to 1000 h with solar cells at maximum power point under continuous illumination with solar simulator have been carried out (1 kW/m2, AM1.5G, equivalent to more than six months of outdoor illumination in locations such as Southeast Spain, with an average irradiation of 1900 kWh/m2/year). The addition of molecular additives in the bulk active layer and ETL and carbon layers not only allows better carrier transport, but also increases the stability of the perovskite solar cell by reducing ion migration within the bulk MAPI and between the different layers. Engineered interfaces with ZrO2 between the TiO2 and carbon layers contribute to reducing degradation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    1
    Citations
    NaN
    KQI
    []