Bi-stability in a vertically excited rectangular tank with finite liquid depth

2012 
We discuss the bi - stability that is possibly exhibited by a liquid free surface in a parametrically - driven two-dimensional (2D) rectangular tank with finite liquid depth. Following the method of adaptive mode ordering, assuming two dominant modes and retaining polynomial nonlinearities up to third-order, a nonlinear finite-dimensional nonlinear modal system approximation is obtained. A "continuation method" of nonlinear dynamics is then used in order to elicit efficiently the instability boundary in parameters` space and to predict how steady surface elevation changes as the frequency and/or the amplitude of excitation are varied. Results are compared against those of the linear version of the system (that is a Mathieu-type model) and furthermore, against an intermediate model also derived with formal mode ordering, that is based on a second - order ordinary differential equation having nonlinearities due to products of elevation with elevation velocity or acceleration. The investigation verifies that, in parameters space, there must be a region, inside the quiescent region, where liquid surface instability is exhibited. There, behaviour depends on initial conditions and a wave form would be realised only if the free surface was substantially disturbed initially.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []