ICAT is a novel Ptf1a interactor that regulates pancreatic acinar differentiation and displays altered expression in tumours

2013 
The PTF1 (pancreas transcription factor 1) complex is a master regulator of differentiation of acinar cells, responsible for the production of digestive enzymes. In the adult pancreas, PTF1 contains two pancreas-restricted transcription factors: Ptf1a and Rbpjl. PTF1 recruits P/CAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] which acetylates Ptf1a and enhances its transcriptional activity. Using yeast two-hybrid screening, we identified ICAT (inhibitor of β-catenin and Tcf4) as a novel Ptf1a interactor. ICAT regulates the Wnt pathway and cell proliferation. We validated and mapped the ICAT–Ptf1a interaction in vitro and in vivo . We demonstrated that, following its overexpression in acinar tumour cells, ICAT regulates negatively PTF1 activity in vitro and in vivo . This effect was independent of β-catenin and was mediated by direct binding to Ptf1a and displacement of P/CAF. ICAT also modulated the expression of Pdx1 and Sox9 in acinar tumour cells. ICAT overexpression reduced the interaction of Ptf1a with Rbpjl and P/CAF and impaired Ptf1a acetylation by P/CAF. ICAT did not affect the subcellular localization of Ptf1a. In human pancreas, ICAT displayed a cell-type-specific distribution; in acinar and endocrine cells, it was nuclear, whereas in ductal cells, it was cytoplasmic. In ductal adenocarcinomas, ICAT displayed mainly a nuclear or mixed distribution and the former was an independent marker of survival. ICAT regulates acinar differentiation and it does so through a novel Wnt pathway-independent mechanism that may contribute to pancreatic disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    4
    Citations
    NaN
    KQI
    []