InSAR monitoring of Arctic land fast sea ice deformation using L-band ALOS-2, C-band Radarsat-2 and Sentinel-1

2021 
Abstract. Arctic amplification is accelerating changes in sea ice regimes in the Canadian Arctic with later freeze-up and earlier melt events, adversely affecting Arctic wildlife and communities that depend on the stability of the sea ice conditions. To monitor both the rate and impact of such change, there is a need to accurately measure sea ice deformation, an important component for understanding ice motion and polar climate. This paper presents Interferometric Synthetic Aperture Radar (InSAR) monitoring of Arctic landfast sea ice deformation as a result of thickness changes measured from ice draft and surface height using C-band Radarsat-2, Sentinel-1 and L-band ALOS-2. The small baseline subset (SBAS) approach was explored to process time series observations for retrieval of temporal deformation changes over the winter. Sea ice deformation (subsidence and uplift in the range of −32–57 cm) detected from satellite SAR data in Cambridge Bay, Nunavut, Canada during the winter of 2018–2019 was found to be in a range of values corresponding to the ice draft growth (30–62 cm) measured from an in-situ ice profiler. The trends of InSAR observations from Sentinel-1 were also consistent with ice surface height changes along two ground tracks detected from ICESat-2. SAR backscatter from Sentinel-1 also corresponded to the surface height with strong correlation coefficient (0.49–0.83). High coherence over ice from C-band was maintained over a shorter acquisition interval than L-band due to temporal decorrelation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []