Arthritis-related B cell epitopes in collagen II are conformation-dependent and sterically privileged in accessible sites of cartilage collagen fibrils.

1998 
Abstract In collagen-induced arthritis, a murine autoimmune model for rheumatoid arthritis, immunization with native but not heat-denatured cartilage-specific collagen type II (CII) induces a B cell response that largely contributes to arthritogenicity. Previously, we have shown that monoclonal antibodies established from arthritis prone DBA/1 mice require the triple-helical conformation of their epitopes for antigen recognition. Here, we present a novel approach to characterize arthritis-related conformational epitopes by preparing a panel of 130 chimeric collagen X/CII molecules. The insertion of a series of CII cassettes into the triple-helical recombinant collagen X allowed for the first time the identification of five triple-helical immunodominant domains of 5–11 amino acid length, to which 75% of 36 monoclonal antibodies bound. A consensus motif,“R G hydrophobic,” was found in all immunodominant epitopes. The antibodies were encoded by a certain combination of V-genes in germline configuration, indicating a role of the consensus motif in V-gene selection. The immunodominant domains are spread over the entire monomeric CII molecule with no apparent order; however, a highly organized arrangement became apparent when the CII molecules were displayed in the quarter-staggered assembly within a fibril. This discrete epitope organization most likely reflects structural constraints that restrict the exposure of CII epitopes on the surface of heterotypically assembled cartilage fibrils. Thus, our data suggest a preimmune B cell selection process that is biased by the accessibility of CII determinants in the intact cartilage tissue.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    91
    Citations
    NaN
    KQI
    []