Biological removal of pharmaceuticals by Navicula sp. and biotransformation of bezafibrate

2020 
Abstract Pharmaceutically active compounds are of great concern due to their detection frequency in the environment and the unexpected risks. In this study, the simultaneous removal of mixed pharmaceuticals by microalgae was explored using a typical freshwater diatom Navicula sp. Results showed that Navicula sp. could efficiently remove atenolol, carbamazepine, ibuprofen and naproxen with the efficiencies of >90% after 21 d of exposure. As compared to the removal efficiencies of each pharmaceutical in the individual pharmaceutical treatments, the degradation of sulfamethoxazole, bezafibrate, and naproxen was improved in the mixed treatment, whereas the removal efficiencies of carbamazepine and atenolol decreased. Additionally, the presence of hydrophobic pharmaceuticals (i.e., ibuprofen and naproxen) accelerated the degradation of carbamazepine and sulfamethoxazole and inhibited the removal of atenolol in the mixture with the combination of six pharmaceuticals, while the addition of other pharmaceuticals show no significant effect on the removal of ibuprofen and naproxen. The bioaccumulation of pharmaceuticals in Navicula sp. increased as their log KOW values decreased. Four bezafibrate metabolites were identified and the degradation pathways of bezafibrate in diatom were proposed. It is the first report on the metabolism of BEZ in diatom, and further studies on the environmental risk of the metabolites should be investigated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    8
    Citations
    NaN
    KQI
    []