Seismic Structure of the Crust and Lithospheric Mantle of the Indian Shield: A Review
2021
The article reviews the history and accomplishments of CSIR-NGRI over the past 60 years, related to elucidating the seismic structure of the crust and lithospheric mantle of the Indian shield. Extensive investigations have been carried out in diverse geological and tectonic provinces of India, employing seismic reflection, refraction/wide-angle reflection and passive seismology to decipher (a) the evolution of the Indian plate through geological time, (b) hazard and its mitigation and (c) accumulation and disposition of natural resources. These endeavours entailed the application and development of state-of-the-art methodologies. Synthesis of the results from active and passive seismology reveals that the thickness of the crust varies between 28 and 65 km in the Kachchh and Aravalli regions respectively, consistent with their evolutionary histories. The thickest crust is observed in the western Dharwar craton (WDC) and the shallowest lies in the west coast. The crust in the shield region is mostly thicker, while it is thin beneath the rift zones. Results from coincident reflection and wide-angle seismic reflection studies broadly suggest a three-layered crust with magmatic underplating. Interestingly, the seismic sections traversing the Aravalli fold belt, central Indian suture zone, Dharwar craton and Southern Granulite Terrain (SGT) depict paleo-collision and subduction environments. The diverse character of the Moho, crustal fabrics and structure in different geological provinces indicate that contrasting tectonic environments might have influenced their evolution and support the hypothesis that plate tectonic processes were operative since Neoarchean. The thickness of the lithosphere estimated from receiver functions varies from 80 to 140 km. An undulation in the Lithosphere Asthenosphere Boundary reveals evidence for a flexure on a regional scale, owing to the continental collision of the Indian and Asian plates. However, the lithospheric thickness derived from surface wave dispersion studies is somewhat larger, ranging from 100 to 250 km, with some body wave tomographic studies suggesting it to be ∼400 km, in consonance with the concept of Tectosphere. The thickness values derived from both the methods agree at a few locales such as the Eastern Dharwar Craton, SGT, Cambay, Singhbhum and western DVP. However, a broad disagreement prevails in WDC and northern part of the Indian shield where surface wave tomography reveals the thickness of lithosphere to be 140 to 200 km.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
181
References
0
Citations
NaN
KQI