Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures
2014
In this work we propose a novel framework for generic event monitoring in live cell culture videos, built on the assumption that unpredictable observations should correspond to biological events. We use a small set of event-free data to train a multioutput multikernel Gaussian process model that operates as an event predictor by performing autoregression on a bank of heterogeneous features extracted from consecutive frames of a video sequence. We show that the prediction error of this model can be used as a probability measure of the presence of relevant events, that can enable users to perform further analysis or monitoring of large-scale non-annotated data. We validate our approach in two phase-contrast sequence data sets containing mitosis and apoptosis events: a new private dataset of human bone cancer (osteosarcoma) cells and a benchmark dataset of stem cells.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
16
References
4
Citations
NaN
KQI