Lamin-related congenital muscular dystrophy alters mechanical signaling and skeletal muscle growth

2020 
Background. Laminopathies are a clinically heterogeneous group of disorders caused by mutations in the LMNA gene, which encodes the nuclear envelope proteins lamins A and C. The most frequent diseases associated with LMNA mutations are characterized by skeletal and cardiac involvement, and include autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B, and LMNA-related congenital muscular dystrophy (LMNA-CMD). Although the exact pathophysiological mechanisms responsible for LMNA-CMD are not yet understood, severe contracture and muscle atrophy suggest that impair skeletal muscle growth may contribute to the disease severity. Methods. We used human muscle stem cells (MuSCs) carrying 4 different LMNA mutations and two mouse models of muscle laminopathies, representing a spectrum of disease severity, to investigate the ability of skeletal muscle to differentiate and to hypertrophy in response to mechanical challenges. We extended these finding to individuals with LMNA-related muscular dystrophy using muscle biopsies. Results. In vitro, we observe impaired myogenic differentiation with disorganized cadherin/β catenin adhesion complexes in MuSCs carrying LMNA-CMD. We show that skeletal muscle from Lmna-CMD mice is unable to hypertrophy in response to functional overload, due to defective accretion of activated MuSCs, defective protein synthesis and defective remodeling of the neuro-muscular junction. Moreover, stretched myotubes and overloaded muscle fibers with LMNA-CMD mutations display aberrant mechanical regulation of the Yes-Associated Protein (YAP), a key sensor and mediator of mechanical cues. We also observe defects in MuSC activation and YAP signaling in muscle biopsies from LMNA-CMD patients. These phenotypes are not recapitulated in closely-related EDMD models. Conclusions. Combining studies in vitro, in vivo and patient samples, we find that LMNA-CMD mutations interfere with mechano-signaling pathways in skeletal muscle, implicating defective skeletal muscle growth as a pathogenic contributor for the severity of LMNA-related muscular dystrophy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []