Analysis of Cytoskeleton-Destabilizing Agents by Optimized Optical Navigation and AFM Force Measurements

2010 
Mechanical properties of cells are determined by the dynamic behavior of the cytoskeleton and physical interactions with the environment. The cytoskeleton, composed of actin filaments, intermediate filaments, and microtubules, is vital for numerous key cellular processes, such as cell division, vesicle trafficking, cell contraction, cell motility, and cell signaling. There is increasing evidence that deregulation of cytoskeletal components like disassembly of actin and tubulin filaments is an important parameter in cellular pathology. Thus, significant alterations of the mechanical phenotype of the cell and its surrounding microenvironment are reported to be involved in aberrant cellular processes and successively contribute to onset and progression of diseases such as cancer, malaria, and possibly neurodegeneration. In vitro and ex vivo biomechanical studies have shown that cancer cells have significantly decreased elastic moduli than their normal counterparts, a characteristic that is attributed to the ability of cancer cells to metastasize or spread.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    9
    Citations
    NaN
    KQI
    []