Effects of Initial Structure and Reversion Temperature on Austenite Nucleation Site in Pearlite and Ferrite–Pearlite

2018 
Austenite nucleation sites were investigated in near-eutectoid 0.8 mass pct C steel and hypoeutectoid 0.4 mass pct C steel samples with full pearlite and ferrite–pearlite initial structures, respectively. In particular, the prior austenite grain size had been coarsened to compare grain boundaries in the hierarchical pearlite structure, i.e., the low-angle pearlite colony and high-angle block boundaries with ferrite/pearlite interfaces in the austenite nucleation ability. When the full pearlite in 0.8 mass pct C steel underwent reversion at a relatively low temperature, austenite grains preferentially formed at pearlite block boundaries. Consequently, when the full pearlite with the coarse block structure underwent reversion just above the eutectoid temperature, the reversion took a long time due to the low nucleation density. However, austenite grains densely formed at the pearlite colony boundaries as well, as the reversion temperature became sufficiently high. On the other hand, when ferrite–pearlite in the 0.4 mass pct C steel underwent reversion to austenite, the ferrite/pearlite interface acted as a more preferential austenite nucleation site than the pearlite block boundary even in the case of low-temperature reversion. From these results, it can be concluded that the preferential austenite nucleation site in carbon steels is in the following order: ferrite/pearlite interface > pearlite block > colony boundaries. In addition, orientation analysis results revealed that ferrite restricts the austenite nucleation more strongly than pearlitic ferrite does, which contributes to the preferential nucleation at ferrite/pearlite interfaces. This suggests that austenite grains formed at a ferrite/pearlite interface tend to have an identical orientation even under high-temperature reversion. Therefore, it is thought that the activation of austenite nucleation within pearlite by increasing the reversion temperature may be effective for rapid austenitization and the grain refinement of austenite structure after the completion of reversion in carbon steels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    2
    Citations
    NaN
    KQI
    []