Alteration in de novo pyrimidine biosynthesis during uridine reversal of pyrazofurin‐inhibited dna synthesis

1991 
Pyrazofurin, a pyrimidine nucleoside analogue with antineoplastic activity, inhibits cell proliferation and DNA synthesis in cells by inhibiting uridine 5′-phosphate (UMP) synthase. It has been previously shown in concanavalin A (con A)-stimulated guinea pig lymphocytes (23) that pyrazofurininhibited DNA synthesis could be selectively reversed by exogenous uridine (Urd). In this report, we have examined possible mechanisms for the Urd reversal with experiments that determine the ability of exogenous Urd to (a) interfere with either the intracellular transport of pyrazofurin, or the conversion of pyrazofurin to its intracellularly active form, pyrazofurin-5′-phosphate; (b) reverse the pyrazofurin block of [14C]orotic acid incorporation into DNA; and (c) alter the pattern of exogenous [3H]Urd incorporation into DNA-thymine (DNA-Thy) and DNA-cytosine (DNA-Cyt) during pyrazofurin inhibition of pyrimidine de novo biosynthesis. The results of these experiments showed that Urd reversal does not occur through altered pyrazofurin transport or intracellular conversion to pyrazofurin-5′-phosphate, nor does it alter the distribution of [3H]Urd in DNA-Thy and DNA-Cyt. Instead, these findings indicate that the primary mechanism for exogenous Urd reversal of pyrazofurin inhibition of DNA synthesis involves the reversal of pyrazofurin inhibition of UMP synthase, thus restoring orotic acid incorporation into lymphocyte DNA through the pyrimidine de novo pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []