Band structure and giant Stark effect in two-dimensional transition-metal dichalcogenides

2018 
We present a comprehensive study of the electronic structures of 192 configurations of 39 stable, layered, transition-metal dichalcogenides using density-functional theory. We show detailed investigations of their monolayer, bilayer, and trilayer structures' valence-band maxima, conduction-band minima, and band gap responses to transverse electric fields. We also report the critical fields where semiconductor-to-metal phase transitions occur. Our results show that band gap engineering by applying electric fields can be an effective strategy to modulate the electronic properties of transition-metal dichalcogenides for next-generation device applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []