Trend to Equilibrium for Reaction-Diffusion Systems Arising from Complex Balanced Chemical Reaction Networks

2017 
The quantitative convergence to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks with mass action kinetics is studied using the so-called entropy method. In the first part of the paper, by deriving explicitly the entropy dissipation, we show that for complex balanced systems without boundary equilibria, each trajectory converges exponentially fast to the unique complex balance equilibrium. Moreover, a constructive proof is proposed to explicitly estimate the rate of convergence in the special case of a cyclic reaction. In the second part of the paper, complex balanced systems with boundary equilibria are considered. We focus on a specific case involving three chemical substances for which the boundary equilibrium is shown to be unstable in some sense, so that exponential convergence to the unique strictly positive equilibrium is recovered.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    49
    Citations
    NaN
    KQI
    []