Carbon nanotube supported nickel catalysts for anisole and cyclohexanone conversion in the presence of hydrogen and synthesis gas: Effect of plasma, acid, and thermal functionalization

2020 
Abstract Developing integrated processes to transform lignin-derived compounds into value-added products is a promising means for diminishing the aftereffects of conventional routes. Carbon nanotube supported catalysts are currently major trends. In this regard, the transformation of anisole and cyclohexanone by Carbon-nanotube-supported nickel catalysts in the presence of hydrogen and simulated lignin-derived synthesis gas is investigated. The effect of catalyst functionalization is also evaluated. Acid, thermal, and plasma methods are employed to functionalize the catalysts. The samples are evaluated at 400 °C and 20 bar. 83.7–86.4% and 70.1–75.4% of anisole conversions in hydrogen- and syngas-assisted reactions were managed, respectively. The highest conversions in the presence of hydrogen and syngas were obtained over the acid- and thermally-treated samples, respectively. Cyclohexanone, phenol, benzene, toluene, cresols, cyclohexene, and trimethylcyclohexane were the major products of anisole conversion. 88.5–90.8% and 79.7–87.7% of cyclohexanone conversions were managed by hydrogen- and syngas-assisted processes, respectively. Acid- and plasma-treated samples offered the highest conversions in the hydrogen- and syngas-assisted reactions, respectively. The major products of cyclohexanone conversion included cyclohexene, cyclohexanol, cresols, benzene, and phenol. The results of the present study demonstrated that an integrated lignin-based process can be managed for the production of chemicals from lignin-derived syngas, catalyst, and bio-oil.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    90
    References
    6
    Citations
    NaN
    KQI
    []