The Influence of Storms on Water Quality and Phytoplankton Dynamics in the Tidal James River

2017 
Due to the unpredictable nature of intense storms and logistical constraints of sampling during storms, little is known about their immediate and long-term impacts on water quality in adjacent aquatic ecosystems. By combining targeted experiments with routine monitoring, we evaluated immediate impacts of two successive storm events on water quality and phytoplankton community response in the tidal James River and compared these findings to a non-storm year. The James River is a subestuary of the Chesapeake Bay and sampling was conducted before, during, and after Hurricane Irene and Tropical Storm (TS) Lee in 2011 and during the same time period (late summer/early fall) in 2012 when there were no storms. We collected and compiled data on nutrient and chlorophyll a concentrations, phytoplankton abundance, nitrogen uptake, primary productivity rates, and surface salinity, temperature, and turbidity in the meso- and polyhaline segments of the James River. Hurricane Irene introduced significant amounts of freshwater over the entire James River and Chesapeake Bay watersheds, while rainfall from TS Lee fell primarily on the tidal fresh region of the James River and headwaters of the Chesapeake Bay. Dinoflagellates dominated the algal community in the meso- and polyhaline segments prior to the storms in 2011, and a mixed diatom community emerged after the storms. In the mesohaline river segment, cyanobacteria abundance increased after TS Lee when salinities were depressed, likely due to washout from the oligohaline and tidal fresh regions of the river. In 2012, dinoflagellates dominated the community in both segments of the river during late summer but diatoms were also abundant and their biomass fluctuated throughout the summer and fall. Cyanobacteria were not present in either segment. Overall, we observed that the high-intensity rainfall from Hurricane Irene combined with high flushing in the headwaters as a result of TS Lee likely reduced primary productivity and altered community composition in the mesohaline segment but not the more estuarine-influenced polyhaline segment. Understanding the influence of high freshwater flow with a short residence time associated with storms is key to the planning and management of estuarine restoration as such disturbances are projected to increase as a result of climate change.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    11
    Citations
    NaN
    KQI
    []