Using Polypeptide Bearing Furan Side Chains as a General Platform to Achieve Highly Effective Preparation of Smart Glycopolypeptide Analogue-Based Nano-Prodrugs for Cancer Treatment.
2020
Abstract Although several synthetic polypeptide-based nano-prodrugs (NPDs) have entered clinical trials for cancer treatment, achieving a highly effective production of the NPDs for clinical translation remains a challenge. Herein, we develop a typical preparation of pH/glutathione (GSH) dual-responsive glycopolypeptide analogue NPDs having a high drug capsulation/loading efficiency of ca. 93% and ca. 27% even based on ring-opening polymerization (ROP) of a novel and general furan-containing N-carboxyanhydride (NCA) monomer, which facilitates the Diels-Alder (D-A) side-chain functionalization by maleimide modified chemotherapy drug without using any reactive additives. High reactivity of the D-A reaction resulting in the high preparation efficiency of the NPDs is confirmed by 1H NMR and density functional theory (DFT) calculations. The self-assembled properties as well as the dual-responsiveness of the NPDs are systemically studied by particle size and zeta potential assay, transmission electron microscopy and drug-delivery dynamics. The cell uptake mechanism, intracellular drug distribution, in vitro/vivo antitumor activity evaluations and the main organ damages of the NPDs are all investigated. Our work can provide a good solution to solve the inefficient fabrication of the smart synthetic polypeptide-based micelles for cancer treatment by following this general and sophisticated platform.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
66
References
3
Citations
NaN
KQI