Manipulating Weyl quasiparticles by orbital-selective photoexcitation in WTe2.
2021
Optical control of structural and electronic properties of Weyl semimetals allows development of switchable and dissipationless topological devices at the ultrafast scale. An unexpected orbital-selective photoexcitation in type-II Weyl material WTe2 is reported under linearly polarized light (LPL), inducing striking transitions among several topologically-distinct phases mediated by effective electron-phonon couplings. The symmetry features of atomic orbitals comprising the Weyl bands result in asymmetric electronic transitions near the Weyl points, and in turn a switchable interlayer shear motion with respect to linear light polarization, when a near-infrared laser pulse is applied. Consequently, not only annihilation of Weyl quasiparticle pairs, but also increasing separation of Weyl points can be achieved, complementing existing experimental observations. In this work, we provide a new perspective on manipulating the Weyl node singularity and coherent control of electron and lattice quantum dynamics simultaneously. Photoexcitation in Weyl semimetals is recently reported to induce topological phase transitions useful for ultrafast switching devices. Here, the authors predict that the symmetry of the atomic orbitals comprising the Weyl bands in response to linear light polarization allows for not only annihilation but also separation of Weyl quasiparticles.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
71
References
5
Citations
NaN
KQI