Dolbeault cohomology of complex nilmanifolds foliated in toroidal groups
2018
It is conjectured that the Dolbeault cohomology of a complex nilmanifold $X$ is computed by left-invariant forms. We prove this under the assumption that $X$ is suitably foliated in toroidal groups and deduce that the conjecture holds in real dimension up to six.
Our approach generalises previous methods, where the existence of a holomorphic fibration was a crucial ingredient.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
4
References
5
Citations
NaN
KQI