Scaling an OMA Modal Model of a Wood Building Using OMAH and a Small Shaker

2021 
Operational modal analysis, OMA, results in unscaled mode shapes, since no forces are measured. Yet, obtaining a scaled modal model, i.e. knowing the modal mass of each mode (assuming proportional damping), is essential in many cases for structural health monitoring and load estimation. Several methods have therefore recently been developed for this purpose. The so-called OMAH method is a recently developed method for scaling OMA models, based on harmonic excitation of the structure. A number of frequencies are excited, one by one, and for each frequency, one or more frequency response values are calculated, that are then used for estimation of the modal masses of each mode, and residual effects of modes outside the frequency of interest. In the present paper, measurements were made on a four-story office building which was excited with a small, 200 N sine peak electrodynamic shaker. It is demonstrated that this small shaker was sufficient to excite the building with a force level of approx.. 1.8 N RMS close to the first eigenfrequency of the building, which was sufficient to produce harmonic response across the building. Reliable modal masses were possible to obtain within an accuracy of 6%. This demonstrates the feasibility of the OMAH method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []