Modeling the influence of chemical composition on compressive strength behavior of alkali-activated phosphorus slag cement using statistical design

2018 
In this study, a statistical experimental design based on response surface methodology (RSM) has been applied to predict and optimize the compressive strength of alkali-activated phosphorus slag in different ages (3, 7, and 28 days). For this purpose, the binder samples were prepared with different molar ratios of SiO2/Na2O (S/N), Na2O/Al2O3 (Na/Al), and H2O/Al2O3 (H/Al) as alkali activator. Results showed that S/N molar ratio plays its role in early ages of curing and Na/Al molar ratio, and showed its significant effect on 7 and 28 days of compressive strength. H/Al molar ratio had the most significant effect on compressive strength compared to the other parameters. The derived RSM models were statistically adequate and could be used to predict the compressive strength. The optimum chemical composition of activator to obtain the highest compressive strength was achieved as 0.39, 1.34, and 30 for S/N, Na/Al, and H/Al molar ratios, respectively, with compressive strength of 30, 65, and 100 MPa at 3, 7, and...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    5
    Citations
    NaN
    KQI
    []