Fc‐engineered EGF‐R antibodies mediate improved antibody‐dependent cellular cytotoxicity (ADCC) against KRAS‐mutated tumor cells

2010 
Oncogenic mutations of the KRAS gene have emerged as a common mechanism of resistance against epidermal growth factor receptor (EGF-R)-directed tumor therapy. Mutated KRAS leads to ligand-independent activation of signaling pathways downstream of EGF-R. Thereby, direct effector mechanisms of EGF-R antibodies, such as blockade of ligand binding and inhibition of signaling, are bypassed. Thus, a humanized variant of the approved EGF-R antibody Cetuximab inhibited growth of wild-type KRAS-expressing A431 cells, but did not inhibit KRAS-mutated A549 tumor cells. We then investigated whether killing of tumor cells harboring mutated KRAS can be improved by enhancing antibody-dependent cellular cytotoxicity (ADCC). Protein- and glyco-engineering of antibodies’ Fc region are established technologies to enhance ADCC by increasing antibodies’ affinity to activating Fcγ receptors. Thus, EGF-R antibody variants with increased affinity for the natural killer (NK) cell-expressed FcγRIIIa (CD16) were generated and analyzed. These variants triggered significantly enhanced mononuclear cell (MNC)-mediated killing of KRAS-mutated tumor cells compared to wild-type antibodies. Additionally, cells transfected with mutated KRAS were killed as effectively by ADCC as vector-transfected control cells. Together, these data demonstrate that KRAS mutations are not sufficient to render tumor cells resistant to ADCC. Consequently Fc-engineered EGF-R antibodies may prove effective against KRAS-mutated tumors, which are not susceptible to signaling inhibition by EGF-R antibodies. (Cancer Sci 2010; 101: 1080–1088)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    39
    Citations
    NaN
    KQI
    []